
Notes for computational core course Perceptron

theory lecture

Shaul Druckmann

Note: these notes are just an adapted version of the presentation found in
Hertz et alii, ”Introduction to the Theory of Neural Computation”

1 Perceptron Learning

1.1 Definitions

The perceptron learning problem is defined by a set of tuples: patterns and the
output that we require the perceptron to achieve for each pattern {(S1, σ1), (S2, σ2), ..., (SP , σP)}.
The end result of successful perceptron learning is a vector of weights ~J that
defines a perceptron that has the correct (required) output for each pattern in
the set. We will primarily consider here a binary perceptron:

y(~S) = sign(
∑
j

JjSj) = sign(J · S) (1)

Before discussing the nature of perceptron learning it is useful to consider a
geometrical interpretation of the input-output transformation that a perceptron
embodies. Examining equation (1) we see that the output of the perceptron is
equal to the sign of the dot product of the vectors J and S. The geometric in-
terpretation of that is that the output of the neuron is positive if the vector S
lies on the positive side of the hyperplane defined by J and the output negative
if the vector S lies on the other side of the hyperplane defined by J.

For instance let us consider an N = 2 dimensional binary input pattern. There
are four possible configurations: {(+1+1), (+1−1), (−1+1), (−1−1)}. We can
require for each of these configurations a certain output, either +1 or −1. By
choosing different outputs for the four possible configurations we can embody
different input-output transformations such as AND or XOR, see Figure 1. Let
us consider the left part of Figure 1, the AND function. We need to output
+1 for the pattern (+1 + 1) and −1 for the rest. Thus, if we choose J to be
the vector marked in red on the figure, we see that indeed the points that are
required to have positive output lie on the positive side of the hyperplane (in
two dimensions it is just a line) defined by J and that the points required to have
negative output lie on the other side (the ambiguity of a point lying exactly on

1

the line is resolved by adding a very small threshold to the perceptron causing
an input of 0 to result in a negative output). The vector J sets the input to the
correct values and we say that it solves the learning problem. Thus, the geo-
metric interpretation of the learning problem is finding a vector J that defines
a hyperplane so that all positive output points lie on one side and all negative
points on the other. Note that such a J does not always exist. For instance one
cannot find a vector J that correctly assigns the XOR outputs, Figure 1 right
hand side.

Figure 1: And and Xor - Two different transformations for N=2 perceptron

1.2 Perceptron learning rule

We are now ready to define the perceptron learning algorithm. We will discuss
the batch learning algorithm. Batch algorithms refer to algorithms that learn by
repeated presentation of a set of examples (in contrast to online algorithms in
which each example is shown only once). The learning rule is defined as follows:

Jnewj = Joldj + ∆Jj

∆Jj =

2ηξµj σ

µ if yµ 6= σµ

0 if yµ = σµ
(2)

Before discussing the utility of this learning rule we will again consider a geomet-
ric interpretation. Recall that we showed that our problem can be interpreted
as finding a hyper-plane that divides the inputs so that all those with a positive
sign will be on one side and those with a negative sign on the other. It behooves
us to make one more change of variable: multiplying every input ξµj by the
required sign of the output. If the required sign of the output is positive we
will not change anything, if the sign is negative we will multiply the pattern by

2

−1, or, geometrically speaking, reflect it relative to the origin. Following this
transformation, the patterns in the space of the new variables xµj are required
to lie on the same side of the hyper-plane. See figure 2.

Figure 2: Transformations to X variables

There is also a useful geometric interpretation of our learning rule. If the
pattern obeys the inequality, we do not change the weight at all. If it does not,
we add to the weight vector the vector η~xµ, thereby turning the vector in the
direction of ~xµ (which explains why this point is now more likely to be on the
positive side of the hyper-plain). The strength of the change is scaled by the
size of η, our learning parameter. See figure 3

Figure 3: Weight change

1.3 Proving Convergence of Batch Perceptron Learning

We will now prove the convergence of the perceptron learning rule defined above
for batch learning (i.e. repeated presentations of the set of patterns). Specif-
ically, we will show that if the problem has a solution, that is a hyper-plain

3

that correctly separates the points exists (this is sometimes referred to in the
literature as the problem being linearly separable), the learning procedure will
converge in a finite number of steps to a weight vector that correctly assigns the
required outputs. We will begin by defining a measure of the difficulty of the
problem, D, (see figure 4) defined in the following fashion:

D(J) =
1

|J |
minµ

[
~J · ~xµ

]
(3)

A useful result of this definition is that if one can find at least one vector J∗ for
which D(J∗) > 0 then the problem is linearly separable.

Figure 4: Problem difficulty

We are now ready to begin proving the perceptron learning conversion the-
orem. Let us assume that the problem is linearly separable, that is ∃J∗ so that
D(J∗) > 0. Let us define the size Mµ as the number of times the pattern µ has
been used to update the weights. Assuming that the size of the initial (before
learning) weight vector is zero (|J0| = 0) we obtain:

J = J0 +
∑

∆J = 0 + η
∑
µ

Mµxµ (4)

Were the last transition is simply the explicit term for the sum of all the updates
to the vector, see equation (2). If the learning rule has converged then by
definition there are no more updates to the weight vector. Thus, if we define
M =

∑
Mµ then if M is finite the learning has converged. Our proof will

proceed by showing that M must indeed be finite.
The main idea of our proof will be to show that the expression J·J∗

|J| on one

hand increases with M but on the other hand must be finite as it is a (partially)
normalized dot product between two finite size vectors. Thus, M must be finite.

4

Let us begin:

J · J∗ = (η
∑
µ

Mµxµ) · J∗ ≥ ηMmin(xµ · J∗) = ηM |J∗| 1

|J∗|
min(xµ · J∗)

= ηM |J∗|D(J∗) (5)

We find that J · J∗ increases proportionally to M . Let us now consider |J |.
We shall assume that at a given time the pattern xα failed to produce the right
output and was thus used to update the weight vector. The change in the length
of J due to this update is:

∆|J |2 = (J + ηxα)2 − J2 = J2 + 2Jηxα + η2(xα)2 − J2 = η2(xα)2 + 2Jηxα

= η2|xα|+ 2Jηxα = η2N + 2Jηxα (6)

Were in the first transition on the second line we plugged in the fact that xalpha

is an N dimensional vector of ±1 value and thus the square of its size is N . Since
the pattern xalpha failed to produce the correct output we know that it failed
to match the inequality that defines a successfully learned positive example:
J · xµ > 0. Plugging this in:

∆|J |2 = η2N + 2Jηxα ≤ η2N + 0 = Nη2

|J |2 = M∆|J |2 ≤MNη2 (7)

Note that the first transition on the second line was justified as following our
calculations we eliminate the dependency on the specific pattern xα that caused
the update. We find that |J |2 increases proportionally to at most

√
M . Thus:

J · J∗

|J |
∝ M√

M
=
√
M (8)

As we have previously mentioned, the expression in the l.h.s must be finite.
Since we find it increases proportionally to

√
M then

√
M must be finite and

thus of course also M , thereby proving our theorem.

5

